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Influence of Data Distribution on Federated Learning

cONOYULT A~ WN =

Performance in Tumor Segmentation

15 Abbreviations

17 IID: independent and identically distributed
19 HCC: hepatocellular carcinoma

21 FNH: focal nodular hyperplasia

22 GBM: glioblastoma

24 EMD: Earth mover's distance

26 BD: Bhattacharyya distance

CSD: Chi-square distance

29 KSD: Kolmogorov—Smirnov distance

31 NET: non-enhancing tumor region

33 ET: enhancing tumor region

36 Summary
Federated deep learning model performance in tumor segmentation on CT and MRI was affected

40 by differences in data distributions, which was strongly negatively correlated with the distance

42 between data distributions.

ot Key Points

48 (1) The Dice coefficient ratio between federated and centralized models (theta) was strongly
negatively correlated to Earth mover’s distance (EMD) (=-0.920), Bhattacharyya distance

51 (BD) (=-0.893) and chi-square distance (CSD) (=-0.899) values between data distributions,
53 indicating that federating deep learning model performance in tumor segmentation on CT and

MRI decreases as distance between datasets increases.
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(2) Data distributions of federated models with significantly different performances (p<0.05)
from centralized models had significantly higher distances (EMD, BD, and CSD) than those

of federated models showing no difference in performance.
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Abstract

Purpose: To investigate the correlation between differences in data distributions and federated

deep learning (Fed-DL) algorithm performance in tumor segmentation on CT and MRI.

Materials and Methods: Two Fed-DL datasets were retrospectively collected (from November
2020 to December 2021), one dataset of liver tumor CT images (named “FILTS” for Federated
Imaging in Liver Tumor Segmentation; 3 sites, 692 scans) and one publicly available dataset of
brain tumor MRIs (named “FeTS” for Federated Tumor Segmentation; 23 sites, 1251 scans).
Scans from both datasets were grouped according to site, tumor type, tumor size, dataset size,
and tumor intensity. To quantify differences in data distributions, the following four distance
metrics were calculated: Earth mover's distance (EMD), Bhattacharyya distance (BD), Chi-
square distance (CSD), and Kolmogorov—Smirnov Distance (KSD). Both federated and
centralized nnU-Net models were trained by using the same grouped datasets. Fed-DL model
performance was evaluated by using the ratio of Dice coefficients, theta, between federated and

centralized models trained and tested on the same 80:20 split datasets.

Results: The Dice coefficient ratio (theta) between federated and centralized models was
strongly negatively correlated with the distances between data distributions, with correlation
coefficients of -0.920 for EMD, -0.893 for BD, and -0.899 for CSD. However, KSD was weakly

correlated with theta, with a correlation coefficient of -0.479.

Conclusion: Performance of Fed-DL models in tumor segmentation on CT and MRI datasets

were strongly negatively correlated with the distances between data distributions.

KEYWORDS: federated deep learning, tumor segmentation, data distribution
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1 Introduction

Over the past decade, deep learning (DL) has been successfully applied in various medical
imaging applications such as tumor segmentation [1]. However, state-of-the-art performance of
DL models depends largely on the use of diverse training data. The establishment of a
centralized, large-scale, multi-institutional labelled medical imaging dataset is not only
challenging and costly, but compliance with General Data Protection Regulation and Health
Insurance Portability and Accountability Act (HIPAA) guidelines is often associated with

various legal, privacy, security, and data-ownership obstacles [2].

One way to overcome these obstacles is through federated deep learning (Fed-DL) [3, 4], in
which model training is distributed among multiple sites by exchanging model data instead of
raw patient data via the network, decoupling the need of a centralized dataset. Several recent
works [5-7] have demonstrated that Fed-DL provides a promising solution to training of DL
models while protecting patient privacy. Current Fed-DL research focuses mainly on algorithm
performance evaluation between centralized and federated trained models. For instance, Sheller
et al [8] demonstrated that Fed-DL could achieve similar performance to centralized models
when data were split and distributed among 10 sites. Lee et al [9] showed similar findings using
an imbalanced number of scans among sites. However, little is known regarding the impact of

data difference on Fed-DL model performance in tumor segmentation.

In general, Fed-DL requires that data distributions among sites are independent and identically
distributed (IID) to achieve comparable performance to that of a centralized model. However,
real-world datasets are often non-IID due to differences in factors such as disease manifestation,
imaging protocols, or patient populations, leading to potential degradation of model
performance. Zhao et al [10] reported that the accuracy of federated models reduced when the
Earth mover's distance (EMD) of non-IID natural image datasets increased, but the authors did
not compare federated and centralized models. To provide a benchmark for evaluation of Fed-
DL models to differences in data distribution, the Radiological Society of North America
(RSNA) launched the first Federated Tumor Segmentation (FeTS) challenge in 2021 focusing on

segmentation of brain tumors using MRI [11].
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The purpose of our study was to investigate the correlation between the distance of data
distributions and performance of Fed-DL models in tumor segmentation on CT and MRI. To the
best of our knowledge, this is the first systematic study focusing on the impact of data difference
on Fed-DL performance in tumor segmentation. Our specific aims were as follows: (1) build a
large multi-institutional hepatic CT dataset for benchmarking Fed-DL performance of liver
tumor segmentation; (2) calculate quantitative metrics for measuring the distance (difference)
between data distributions; and (3) investigate the correlation between the distances of data

distributions and the performances of Fed-DL in tumor segmentation.

2 Materials and Methods

This retrospective, HIPAA-compliant study was approved by the institutional review board for
data analysis of internal and external datasets collected at the involved sites, and the need for
patient informed consent was waived. All DICOM (Digital Imaging and Communications in
Medicine) images were de-identified at the original institutions before being transferred to our

study.

2.1 Liver Tumor CT Dataset

We established a hepatic CT dataset for training and validation of Fed-DL models of liver tumor
segmentation, which we named “FILTS” for Federated Imaging of Liver Tumor Segmentation.
For the construction of FILTS, we retrospectively collected 692 hepatic contrast-enhanced CT
scans from three sites, including 131 scans from the Liver Tumor Segmentation (LiTS)
challenge (Site A, Europe) [12], 156 scans from Massachusetts General Hospital (MGH) (Site B,
the US), and 405 scans from the Second Affiliated Hospital at Zhejiang University School of
Medicine (SAHZU) (Site C, China). All scans at Site B and Site C were collected for liver tumor
segmentation. The inclusion criteria were as follows: (1) at least one focal liver lesion diagnosed
using CT; (2) confirmation of malignant tumors by corresponding pathologic reports; (3)
diagnosis of benign lesions through pathological analyses or a combination of typical image
performance and clinical data. As a result, fifteen scans (n=15) that did not contain any focal
liver lesions were excluded (Figure 1a). The collected scans were acquired by using different

imaging protocols at various CT scanners (GE, Siemens, and Philips), with a largely varying in-
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plane resolution from 0.52 mm to 1.0 mm and section thickness from 0.45 mm to 6.0 mm

(Figure 1b).

LiTS is a publicly available liver CT dataset, which was collected from seven hospitals and
research institutions in Europe. As the institute information of each scan was removed, we
treated LiTS as Site A with heterogeneous scans. LiTS only provides portal venous phase liver
CT images, which were acquired with different CT scanners and acquisition protocols. The
primary and secondary tumor types in LiTS are hepatocellular carcinoma (HCC) and metastases
(ME). The segmentations provided by the LiTS were reviewed by a senior radiologist (with >10
years’ experience of abdominal CT reading). In total, 734 tumors with an average size of 13.6

cm? were annotated, and 75% of these tumors smaller than 5 cm?.

Site B data were mainly HCC scans collected from September 2005 to August 2015 at MGH,
acquired on two types of CT scanners (Siemens and GE). Three hepatic phases of CT images
were collected: arterial, portal venous, and delayed phase. Tumors were contoured in portal
venous phase with reference to arterial phase on an open software, 3D Quantitative Imaging

(3DQI, V1.0) (https://3dgi.mgh.harvard.edu) by one junior radiologist (3 years’ experience) and

confirmed by the senior radiologist. In total, 762 tumors with an average size of 61.4 cm? were

contoured.

Site C data were hepatic CT scans collected from January 2016 to December 2018 at SAHZU,
including three types of benign liver tumors (focal nodular hyperplasia (FNH), hemangioma
(HEM), and cysts), and three types of malignant liver tumors (HCC, ME, and intrahepatic
cholangiocarcinoma (ICC)). Pre-contrast, arterial, and portal venous phase images, acquired on
three types of CT scanners (Siemens, GE and Philips), were collected. Tumors were contoured
by one junior radiologist (5 years’ experience) using an open-source software (ITK-SNAP) [13]
and confirmed by the senior radiologist. In total, 585 tumors with an average size of 38.2 cm?

were contoured.

Figure 2 compares three examples of CT scan from each of the three sites and CT attenuation

distributions (histograms) of tumors among the three sites.
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2.2 Brain Tumor MRI Dataset

The FeTS 2021 dataset [11] is the first Fed-DL medical image dataset, which was collected from
multiple sites with different clinical protocols, and contains 1251 total scans (with both images
and segmentations). FeTS consists of a subset of glioblastoma (GBM) scans from the Brain
Tumor Segmentation (BraTS) dataset [14] containing institutional information and an additional
collection of GBM scans from other independent institutions. Each scan in FeTS includes 4
sequences (pre- and post-contrast T1-weighted, T2-weighted, and T2-FLAIR). These scans have
been preprocessed using the same steps, including co-registration, resampling (1 mm *1 mm * 1
mm) and skull stripping. Tumors were contoured by one to four readers sharing the same
contouring standard and were then confirmed by experienced neuroradiologists. For our study,
we performed segmentation of GBM in post-contrast T1 images, which includes the non-
enhancing tumor (NET) and enhancing tumor (ET) regions. Because FeTS contains only GBM
(grade 4 glioma), we additionally collected scans of three types of diffuse glioma (astrocytoma,
glioblastoma, oligodendroglioma), which were histopathologically proven grade 2-4, from the
newly published University of California, San Francisco (UCSF) preoperative diffuse glioma
MRI dataset (UCSF-PDGM) [15] to study the impact of different types of glioma on Fed-DL
performance. A total of 500 post-contrast T1-weighted MRI scans were added to our study.

2.3 Data Grouping

We grouped both the FILTS and FeTS datasets respectively, according to site, tumor type, tumor
size, dataset size, and tumor density (CT) / intensity (MRI) for evaluation of Fed-DL model
performance on different types of data distribution. Tumor density refers to CT attenuation and

tumor intensity is the normalized MRI signal intensity (Z-score) of tumors.

e Group 1: Different Sites

In FILTS, three subsets were treated as from three different sites. Portal venous phase CT scans
were selected, as this was the only image type provided by Site A. In FeTS, we selected the three
sites providing more than 40 scans (Site 1: 512 scans, Site 4: 47 scans, and Site 18: 382 scans).

Sites with a small number of scans were not considered as they could introduce high bias.
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e Group 2: Different Tumor Types

In FILTS, we grouped hepatic CT images at Site C according to six types of liver tumors: HEM,
FNH, Cyst, HCC, ICC, and ME. Arterial phase CT scans were selected as certain liver tumor
types, such as HCC and FNH, are better visualized in arterial phase than portal venous phase CT.
In FeTS, the MRI scans added from UCSF-PDGM were grouped into three subsets based on the
three types of diffuse gliomas.

e Group 3: Different Tumor Sizes

In FILTS, we grouped all scans into four subsets corresponding to tumor size thresholds of <15

cm?, 15— 50 cm?, 50 — 130 cm?, and >130 cm?. In FeTS, we grouped all scans from the 2 largest
institutions into 6 subsets by using thresholds of <3 cm?, 3 — 10 cm3, and >10 c¢cm? for Site 1, and
<2 cm?, 2 — 12 cm?, and >12 cm? for Site 18, respectively. We chose different thresholds in order

to keep the number of scans in each subset balanced.

e Group 4: Different Dataset Sizes

To assess the effect of imbalanced training datasets on Fed-DL model performance, we first
randomly selected different subsets from each site in FILTS, provided that the total number of
scans in the two testing subsets remained the same. Because Site A has the least number of scans
(86) among the three sites, we randomly selected a similar number of scans (90) from both Site B
and Site C. Then, we decreased the number of scans in Site A by 25% (65 scans) and 50% (43
scans), and increased the same number of scans in Site B and Site C. Thus, the ratio of numbers
of scans between two subsets decreased from approximately 1.0 (balanced) to 1/3 (imbalanced).
For FeTS, the number of scans between Site 4 and Site 1 and Site 4 and Site 18 were highly

imbalanced, with ratio of approximately 1/10. We evaluated the FeTS results in Group 1.

e Group 5: Different Tumor Densities/Intensities

We grouped the FeTS scans into four subsets (Q1-Q4) using thresholds of MRI signal intensity
(SI) on both non-enhancing tumor (NET) and enhancing tumor (ET) regions, SI-Q1 (n=113)):
NET <25% and ET < 25%, SI-Q12 (n=406): NET < 50% and ET < 50%; SI-Q34 (n=387): NET
> 50% and ET > 50%; SI-Q4 (n=116): NET > 75% and ET > 75%, respectively. For FILTS,
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certain groups of tumors had large differences in tumor density, such as FNH (hyper) vs Cyst

(hypo). We evaluated results for the FILTS dataset in Group 2.

2.4 Data Metrics

e Distance of Data Distribution

Data distribution specifies the data range and the relative frequency (probability of occurrence)
of each data value. A histogram is the most commonly used statistical method to show data
distribution. Four metrics were calculated to quantify distance in data distribution: Earth mover's
distance (EMD) (or Wasserstein Distance) [16], Bhattacharyya distance (BD) [17], Chi-square
distance (CSD) [18], and Kolmogorov—Smirnov distance (KSD) [19].

e Performance of Tumor Segmentation

The Dice coefficient is a most well-known metric to evaluate the performance of segmentation.
We used the theta coefficient to assess performance between a federated model and a centralized

model evaluated on the same dataset, defined as follows:
Theta = (Dice of federated model) / (Dice of centralized model).

In general, theta is less than 1.0. A theta value close to 1.0 means that the federated model
achieves similar performance as that of a centralized model in tumor segmentation. Theta was
reported as mean + standard error, of which the standard error was estimated by method using

bivariate first-order Taylor expansion (https://www.stat.cmu.edu/~hseltman/files/ratio.pdf).

We developed a federated implementation of nnU-Net [20] based on a server-client architecture
and the Fed-Avg algorithm [21]. For a fair comparison between federated and centralized
models, we first ran the nnU-Net planning and preprocessing task on all scans by configuration
of a 3D U-Net segmentation pipeline, such as resampling, normalization, patch size, and data
augmentation parameters. Then, training of either federated or centralized models employed the
same pre-processed data and the same set of hyper-parameters. Federated models were trained on
the scheme of one server and two clients, each client containing one sub-dataset. All federated
and centralized models were trained on an NVIDIA Tesla P40 GPU cluster with 24 GB memory.
Data in each group were randomly split into 80% for training and 20% for testing, and the results

from the testing data were evaluated.
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More technical details of the Fed-DL implementation were described in the Supplemental

Materials.
2.5 Statistical Analysis

Paired t-test was performed to assess the difference in performance between a federated model
and a centralized model on the same dataset. A p-value less than 0.05 rejects the null hypothesis
that mean paired Dice difference between a federated model and a centralized model is zero and
indicates statistically significant different performances between federated and centralized

models.

We also calculated the trendline and Person’s correlation coefficients to evaluate the association
between theta coefficients and distance measures. The trendline is a linear function, y = kx + b,
where the independent variable, x, is distance, dependent variable, y, is the theta value. The
correlation coefficient is a measure of the goodness of fit of a linear relationship between theta
and distance values. Statistical analyses were performed using MedCalc (version 19.5.6), and

graphs were created using Microsoft Excel (version 2210).

2.6 Data Availability

The data and the scripts used to perform study evaluations that support the findings will be made

publicly available, without due reservation.

3 Results

3.1 Fed-DL Performance on Grouped Data

Performance of Fed-DL models trained on data grouped by site, tumor type, tumor size, dataset

size and tumor density/intensity are listed in Table 1-Table 4, respectively.

e Different Sites

We found no evidence of a difference between federated and centralized model performance on

datasets grouped by site (p-values >0.05; Table 1).
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e Different Tumor Types

Table 2 shows theta values ranging from 0.877 to 0.982 in FILTS and 0.975 to 0.999 in FeTS.
Figure 3a and 3b show two examples of distance in data distribution between HCC vs. HEM
(small distance) and FNH vs. cyst (large distance). Figure 4 shows the distributions of CT
attenuation among six types of liver tumors. Of 14 subsets in the FILTS dataset, 5 had

significantly different performances (p-values <0.05) between federated and centralized models.

e Different Tumor Sizes

Performance of Fed-DL models trained with different groups of tumor sizes are listed in Table
3a (FILTS) and Table 3b (FeTS), respectively. Average theta values were high in both the
FILTS (0.98040.154) and FeTS (0.992+0.075) datasets. Figure 3c and 3d show two examples of
distance in data distribution between Size 1 vs Size 2 (small tumors) and Size 3 vs Size 4 (large
tumors). Although Dice values were higher for large tumors compared with small tumors, the

theta values remained similar.

e Different Dataset Sizes

Table 4a shows performance values of Fed-DL models trained with different numbers of scans in
FILTS. Lower ratios of numbers of scans (i.e. more imbalance) led to lower Dice values in both
the federated and centralized models. However, average theta values remained similar:
0.97340.150 (ratio=1.0), 0.9734£0.159 (ratio=0.6), and 0.975+0.128 (ratio=0.3). In the FeTS
dataset (Table 1b), theta values remained high even when the ratio of numbers of scans was less

than 0.3 (e.g., Site 4 : Site 1 =47 : 512 =0.092 and Site 4 : Site 18 =47 : 382 =0.123).

e Different Tumor Densities/Intensities

Performance of federated models trained with different tumor intensities in the FeTS dataset
significantly differed from centralized models (Table 4b). Figure 3e and 3f compare histograms
of enhancing brain tumors between Site 1 vs. Site 4 (p=0.32) and SI-Q1 vs. SI-Q4 (p=0.003). For
FILTS (Table 2a), tumors with different CT density typically had lower theta values, such as
FNH (hyper) vs Cyst (hypo) and HCC (hyper) vs Cyst (hypo).

10
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3.2 Correlation Analysis

The distances of data distributions were negatively correlated with theta, with correlation
coefficients of -0.920, -0.893, -0.899 and -0.479 for EMD, BD, CSD, and KSD, respectively.
The trendlines in Figure 5 show a negative slope between distance (EMD, BD, CSD, KSD) and
theta, indicating lower federated model performance with greater distance between data
distribution. The waterfall plots of EMD, BD, CSD, and KSD in Figure 6 show the effect of
changes in distance of data distribution on performance of federated models compared with

centralized models.

There was a significant difference in performance between federated and centralized models for
10 of the 62 total subsets (groups 1 to 5). Corresponding distances in data distribution also
differed significantly between federated and centralized models, with values of 13.527+4.506
(median=13.445) vs. 2.722+2.728 (median=1.691) (p<0.001) for EMD, 0.691+0.395
(median=0.472) vs. 0.066+0.117 (median=0.025) (p=0.001) for BD, 0.618+0.211
(median=0.531) vs. 0.095+0.137 (median=0.046) (p<0.001) for CSD, and 0.271+0.097
(median=0.260) vs. 0.186+0.097 (median=0.170) (p=0.03) for KSD, respectively.

4 Discussion

In this study, we investigated the correlation between various distance metrics that measure the
difference in data distributions and Fed-DL performance in segmentation of liver tumors on CT
and brain tumors on MRI. EMD had the strongest, negative correlation (r=-0.920) with federated
model performance. We found that the between-site difference of tumor density (CT) / intensity
(MRI) distributions influenced the Fed-DL performance, which was demonstrated by both liver
tumors on CT and brain tumors on MRI. For liver tumors on CT, it was reflected by different
tumor types which had different CT attenuations (density), whereas for brain tumors on MRI, it
was reflected by tumor regions with different MRI signal intensity. In other words, the Fed-DL
performance in tumor segmentation is affected by the difference of CT attenuation or MRI
intensity of tumors at different sites. The magnitude of this difference could be measured by
EMD, BD or CSD. Other factors including different tumor sizes or imbalanced dataset sizes did
not significantly (p>0.05) impact overall data distribution and thus had little influence on

federated model performance.

11
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Our findings are consistent with those of Lee et al [9] and will have substantial impact on the
development of Fed-DL using real-world non-IID data. We observed that a key underlying factor
affecting the performance of federated models is the distance in data distributions. To achieve
comparable performance with a centralized model, a federated model should be trained using
datasets with small distances. Many approaches attempted to solve the issue of non-IID data in
Fed-DL from the algorithmic perspective, such as episodic learning in continuous frequency
space [22], local batch normalization [23], and cross-site modeling [24]. Motivated by our
findings, we propose that data augmentation may be a more feasible and practical solution. For
example, use of domain adaptation [25] among different clients to reduce data difference

measured by EMD may improve Fed-DL performance, even with basic federated algorithms.

The two most common Fed-DL workflows are server-client and peer-to-peer topology [26], and
commonly used aggregation methods include Fed-Avg [21], Base + Personalization layer
(FedPer) [27], and Federated Matched Averaging (FedMA) [28]. The server-client architecture
with the Fed-Avg aggregation algorithm is the most common scheme of Fed-DL. We applied

this federated scheme in our study to demonstrate the generalizability of our findings.

There are only a few publicly available Fed-DL medical imaging datasets, including thorax
disease classification on chest radiographs [29, 30], skin lesion image classification [31, 32],
prostate MRI segmentation [33], and a retinal image database [34]. In particular, the 2021 RSNA
Brain Tumor Al challenge based on FeTS (http://www.synapse.org/brats) has facilitated the first
formal community benchmark explicitly for Fed-DL aggregation algorithms [11]. As FeTS
contains only a single type of glioma, we added three types of glioma collected from the UCSF
diffuse glioma MRI dataset (UCSF-PDGM) [15] to investigate the effect of tumor type on Fed-
DL performance. Since FeTS and UCSF-PDGM had different imaging protocols and standards,
we did not mix UCSF-PDGM scans with FeTS scans in other data groups.

Our study had several limitations. First, Site A used LiTS, which is a multi-site dataset, whereas
datasets at Sites B and C were each acquired from a single site, respectively. Although scans
from the same site were acquired by using similar imaging protocols on different CT scanners,
they also varied in image resolution and image quality. Nevertheless, Site A data may have
impacted study findings due to differences in imaging protocols at multiple sites. Second, tumor

type was not reported for scans from Sites A and B. Since this was a retrospective study, tumor

12
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type data could not be obtained through tissue biopsy or postoperative pathologic examination.
Third, we did not consider the potential effect of inter-reader variability, as segmentation was
performed by different readers using different software at different institutions. This might
contribute to performance degradation. However, such variability among sites may be

unavoidable in real-world federated setting.

In conclusion, differences in data distribution may affect Fed-DL model performance in medical
image segmentation. Model performance was strongly negatively correlated with distance
(EMD, BD, and CSD) in data distribution. Reducing data distance may provide a feasible

solution to ensure development of a high-performing federated model trained on non-IID data.

13
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Figure Legends

Figure 1. (A) Selection criteria and (B) characteristics for the Federated Imaging in Liver Tumor
Segmentation (FILTS) dataset. FNH = focal nodular hyperplasia, HCC = hepatocellular
carcinoma, HEM = hemangioma, ICC = intrahepatic cholangiocarcinoma, LiTS = Liver Tumor

Segmentation, ME = metastases.

Figure 2. (A-C) Example CT axial images of liver tumors at different sites and (D-F) histograms

showing differences in CT attenuation distribution across the three sites.

Figure 3. (A-F) Examples of histogram between two different subsets of tumor in CT Liver
Tumor Segmentation (FILTS) and MRI brain tumor segmentation (FeTS) datasets. HCC =
hepatocellular carcinoma, HEM = hemangioma, FNH = focal nodular hyperplasia, EMD: Earth
mover's distance, BD: Bhattacharyya distance, CSD: Chi-square distance, KSD: D-statistic of

Kolmogorov—Smirnov test.

Figure 4. CT attenuation distributions of different types of tumors at Site C in CT Liver Tumor
Segmentation (FILTS) dataset. HCC = hepatocellular carcinoma, HEM = hemangioma, ME =

metastases, FNH = focal nodular hyperplasia, ICC = intrahepatic cholangiocarcinoma.

Figure 5. Correlation coefficients and trendlines between distance metrics (A) EMD, (B) BD,
(C) CSD, and (D) KSD and theta value. EMD: Earth mover's distance, BD: Bhattacharyya

distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov—Smirnov test.

Figure 6. Waterfall plots of (A) EMD, (B) BD, (C) CSD, and (D) KSD related to the
performances of the federated models in 62 grouped subsets evaluations. EMD: Earth mover's
distance, BD: Bhattacharyya distance, CSD: Chi-square distance, KSD: D-statistic of
Kolmogorov—Smirnov test. Bar color indicates the p-values calculated using paired t test: Red:

<0.05; Yellow: 0.05 <p-value < 0.10; Blue: >0.10.
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Supplemental Material

4.1 Metrics of Data Distribution

Earth mover's distance (EMD) (or Wasserstein Distance) evaluates the dissimilarity between two

data distributions that are represented by histograms [1]. Suppose P ={(p,,u,)}", and
0 =1(q;,v;)} ., are two histograms with sizes m and n, respectively, in which u, (v, ) is the ith
(jth) bin and p, (g, ) is its weight. EMD is defined as the minimum work required to resolve the

supply-demand transports:

P i‘di‘
EMD(P,Q)= minl—z”ff’ d
F=U) Zi,jfij

subject to the following constraints:
DIV IDWE min{zpi’ij}’fz/ 20
j i ij i j
where F'={f;} denotes a set of flows, and each flow f; represents the amount transported from

1

the ith bin to the jth bin. d; is the ground distance between the positions #;, and v, .

For two data distributions P and Q over the same domain X, the Bhattacharyya distance (BD) [2]

is defined as
BD(P,0)=-In(BC(P,0))

where BC(P,Q) = z v P(x)g(x) is the Bhattacharyya coefficient for discrete probability

xeX

distributions.

The chi-square distance (CSD) between two distributions P and Q is defined by [3]

1 lp(0)—g@)7T
CSD(P.0) =5 2 v e

The two-sample Kolmogorov-Smirnov distance (KSD) is defined as the maximum absolute
distance between their cumulative distribution functions (CDFs), which is obtained as [4]
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KSD(P,Q) = max|F, (x) - Fp(x)
where F,(x) and Fj,(x) are the CDFs of the distributions P and Q, respectively.

4.2 Federated Deep Learning (Fed-DL) Models of Tumor
Segmentation

We employed nnU-Net [5] for segmentation of liver tumors on CT and brain tumors on MRI in
the study. Both federated and centralized models applied the same hyper parameters, and the
same data augmentation techniques including rotation, scaling, Gaussian noise, Gaussian blur,
brightness, contrast, simulation of low resolution, gamma correction and mirroring. Instead of
using the original gradients averaging and updating during each mini-batch training, we adopted
the Fed-Avg algorithm [6], a more efficient and common Fed-DL training strategy, in which

weight averaging was performed during each epoch.

In the training stage, we applied mini-batch optimizer to train the model, and the network was
trained for 300 epochs, with one epoch being defined by an iteration over 200 mini-batches.
Samples in the mini-batches were chosen randomly from the training scans. Stochastic gradient
descent with Nesterov momentum (i = 0.99) and an initial learning rate of 0.01 were used for
learning network weights. The learning rate was decayed throughout the training by following
the ‘poly’ learning rate policy of (1 — epoch/epochmax)?°. We used the loss function that
combines Dice loss with the standard binary cross-entropy (BCE) loss, which is generally the
default for segmentation models. Also, the instance normalization was applied for each layer of

the model.

In the inference stage, only testing data were used for inference. Segmentations were predicted
with a sliding window approach, in which the window size equals the patch size used during
training. Adjacent predictions overlap by half of the size of a patch. A Gaussian importance
weighting was applied to reduce stitching artifacts and the influence of positions close to

borders.

There are several open-source Fed-DL frameworks, such as TensorFlow Federated [7], PySyft
[8], and Federated Al Technology Enabler [9]. These frameworks provided some general

prototypes of server-client topology and communication mechanism. But they did not provide
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1

2

i some specific networks or optimization strategies that were required in medical image

5 segmentation. Therefore, most of Fed-DL research was built on specific networks or learning

6

7 strategies on their own. As the nnU-Net framework was too complicated to directly plunge into
2 the existing federated framework, we implemented the federated averaging on the nnU-Net

:? framework. The implemented server-client communication exactly followed the process

12 described in [6].

13

14 The scripts of training commands of Fed-DL and centralized learning based on nnU-Net were
15

16 like:

17

12 python FL training.py 3d_fullres nnUNetTrainerV2 Task002 BrainTumor I sitel site2 --npz --
20 use_compressed_data

21

;5 python CL_training.py 3d_fullres nnUNetTrainerV2 Task002 BrainTumor [ sitel site2 --npz --
24 use _compressed_data

25

26

27
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131 hepatic CT scans 156 hepatic CT scans 405 hepatic CT scans
retrospectively collected refrospectively collected refrospectively collected
from Site A from Site B from Site C
Exchided: Excluded: Exclided:
15 CT scans did 0 CT scans did not 0 CT scans did not
not have tumors have tumors have tumors
Included: Included: Included:
116 hepatic CT scans contain 156 hepatic CT scans contain 405 hepatic CT scans contain
tumors from Site A tumors from Site B tumors from Site C
Included:
677 hepatic CT scans contain
tumors from three sites

Figure 1. (a) Selection criteria.
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Data Name Data Number of In-plane Slice Thickness | Number of Tumor Type

oNOYTULT D WN =

Source Cases Resolution (mm) (mm) Tumors

9 Site A LiTS (publicly 131 0.55-1.0 045-6.0 734 HCC and metastases
10 available)

11 Site B A hospital in 156 0.59-0.98 20-50 762 HCC
12 Us

13 Site C A hospital in 405 0.52-0.96 0.8-5.0 585 | HEM. FNH, Cyst, HCC, ICC,
14 China and ME

16 Age and sex were not listed as they were de-identified.

18 Figure 1.(b) characteristics for the Federated Imaging in Liver Tumor Segmentation (FILTS) dataset. FNH =
focal nodular hyperplasia, HCC = hepatocellular carcinoma, HEM = hemangioma, ICC = intrahepatic
cholangiocarcinoma, LiTS = Liver Tumor Segmentation, ME = metastases
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Figure 2. (A-C) Example CT axial images of liver tumors at different sites and (D-F) histograms showing
differences in CT attenuation distribution across the three sites.
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Figure 3. (A-F) Examples of histogram between two different subsets of tumor in CT Liver Tumor
Segmentation (FILTS) and MRI brain tumor segmentation (FeTS) datasets. HCC = hepatocellular carcinoma,
HEM = hemangioma, FNH = focal nodular hyperplasia, EMD: Earth mover's distance, BD: Bhattacharyya
distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov-Smirnov test.
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Figure 4. CT attenuation distributions of different types of tumors at Site C in CT Liver Tumor Segmentation
(FILTS) dataset. HCC = hepatocellular carcinoma, HEM = hemangioma, ME = metastases, FNH = focal

CT attenuation (HU)

nodular hyperplasia, ICC = intrahepatic cholangiocarcinoma.
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Figure 5. Correlation coefficients and trendlines between distance metrics (A) EMD, (B) BD, (C) CSD, and
(D) KSD and theta value. EMD: Earth mover's distance, BD: Bhattacharyya distance, CSD: Chi-square
distance, KSD: D-statistic of Kolmogorov-Smirnov test.
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Figure 6. Waterfall plots of (A) EMD, (B) BD, (C) CSD, and (D) KSD related to the performances of the
federated models in 62 grouped subsets evaluations. EMD: Earth mover's distance, BD: Bhattacharyya
distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov-Smirnov test. Color indicates the p-
values calculated using paired t test: Red: <0.05; Yellow: 0.05 < p-value < 0.10; Blue: 20.10.
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