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Influence of Data Distribution on Federated Learning 

Performance in Tumor Segmentation

Abbreviations

IID: independent and identically distributed

HCC: hepatocellular carcinoma

FNH: focal nodular hyperplasia

GBM: glioblastoma

EMD: Earth mover's distance

BD: Bhattacharyya distance

CSD: Chi-square distance

KSD: Kolmogorov–Smirnov distance

NET: non-enhancing tumor region

ET: enhancing tumor region

Summary

Federated deep learning model performance in tumor segmentation on CT and MRI was affected 

by differences in data distributions, which was strongly negatively correlated with the distance 

between data distributions. 

Key Points

(1) The Dice coefficient ratio between federated and centralized models (theta) was strongly 

negatively correlated to Earth mover’s distance (EMD) (r=-0.920), Bhattacharyya distance 

(BD) (r=-0.893) and chi-square distance (CSD) (r=-0.899) values between data distributions, 

indicating that federating deep learning model performance in tumor segmentation on CT and 

MRI decreases as distance between datasets increases. 
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(2) Data distributions of federated models with significantly different performances (p<0.05) 

from centralized models had significantly higher distances (EMD, BD, and CSD) than those 

of federated models showing no difference in performance. 
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Abstract

Purpose: To investigate the correlation between differences in data distributions and federated 

deep learning (Fed-DL) algorithm performance in tumor segmentation on CT and MRI.

Materials and Methods: Two Fed-DL datasets were retrospectively collected (from November 

2020 to December 2021), one dataset of liver tumor CT images (named “FILTS” for Federated 

Imaging in Liver Tumor Segmentation; 3 sites, 692 scans) and one publicly available dataset of 

brain tumor MRIs (named “FeTS” for Federated Tumor Segmentation; 23 sites, 1251 scans). 

Scans from both datasets were grouped according to site, tumor type, tumor size, dataset size, 

and tumor intensity. To quantify differences in data distributions, the following four distance 

metrics were calculated: Earth mover's distance (EMD), Bhattacharyya distance (BD), Chi-

square distance (CSD), and Kolmogorov–Smirnov Distance (KSD). Both federated and 

centralized nnU-Net models were trained by using the same grouped datasets. Fed-DL model 

performance was evaluated by using the ratio of Dice coefficients, theta, between federated and 

centralized models trained and tested on the same 80:20 split datasets. 

Results: The Dice coefficient ratio (theta) between federated and centralized models was 

strongly negatively correlated with the distances between data distributions, with correlation 

coefficients of -0.920 for EMD, -0.893 for BD, and -0.899 for CSD. However, KSD was weakly 

correlated with theta, with a correlation coefficient of -0.479.

Conclusion: Performance of Fed-DL models in tumor segmentation on CT and MRI datasets 

were strongly negatively correlated with the distances between data distributions. 

KEYWORDS: federated deep learning, tumor segmentation, data distribution 



3

1 Introduction

Over the past decade, deep learning (DL) has been successfully applied in various medical 

imaging applications such as tumor segmentation [1]. However, state-of-the-art performance of 

DL models depends largely on the use of diverse training data. The establishment of a 

centralized, large-scale, multi-institutional labelled medical imaging dataset is not only 

challenging and costly, but compliance with General Data Protection Regulation and Health 

Insurance Portability and Accountability Act (HIPAA) guidelines is often associated with 

various legal, privacy, security, and data-ownership obstacles [2].

One way to overcome these obstacles is through federated deep learning (Fed-DL) [3, 4], in 

which model training is distributed among multiple sites by exchanging model data instead of 

raw patient data via the network, decoupling the need of a centralized dataset. Several recent 

works [5-7] have demonstrated that Fed-DL provides a promising solution to training of DL 

models while protecting patient privacy. Current Fed-DL research focuses mainly on algorithm 

performance evaluation between centralized and federated trained models. For instance, Sheller 

et al [8] demonstrated that Fed-DL could achieve similar performance to centralized models 

when data were split and distributed among 10 sites. Lee et al [9] showed similar findings using 

an imbalanced number of scans among sites. However, little is known regarding the impact of 

data difference on Fed-DL model performance in tumor segmentation.

In general, Fed-DL requires that data distributions among sites are independent and identically 

distributed (IID) to achieve comparable performance to that of a centralized model. However, 

real-world datasets are often non-IID due to differences in factors such as disease manifestation, 

imaging protocols, or patient populations, leading to potential degradation of model 

performance. Zhao et al [10] reported that the accuracy of federated models reduced when the 

Earth mover's distance (EMD) of non-IID natural image datasets increased, but the authors did 

not compare federated and centralized models. To  provide a benchmark for evaluation of Fed-

DL models to differences in data distribution, the Radiological Society of North America 

(RSNA) launched the first Federated Tumor Segmentation (FeTS) challenge in 2021 focusing on 

segmentation of brain tumors using MRI  [11]. 
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The purpose of our study was to investigate the correlation between the distance of data 

distributions and performance of Fed-DL models in tumor segmentation on CT and MRI. To the 

best of our knowledge, this is the first systematic study focusing on the impact of data difference 

on Fed-DL performance in tumor segmentation. Our specific aims were as follows: (1) build a 

large multi-institutional hepatic CT dataset for benchmarking Fed-DL performance of liver 

tumor segmentation; (2) calculate quantitative metrics for measuring the distance (difference) 

between data distributions; and (3) investigate the correlation between the distances of data 

distributions and the performances of Fed-DL in tumor segmentation. 

2 Materials and Methods

This retrospective, HIPAA-compliant study was approved by the institutional review board for 

data analysis of internal and external datasets collected at the involved sites, and the need for 

patient informed consent was waived. All DICOM (Digital Imaging and Communications in 

Medicine) images were de-identified at the original institutions before being transferred to our 

study.

2.1 Liver Tumor CT Dataset 

We established a hepatic CT dataset for training and validation of Fed-DL models of liver tumor 

segmentation, which we named “FILTS” for Federated Imaging of Liver Tumor Segmentation. 

For the construction of FILTS, we retrospectively collected 692 hepatic contrast-enhanced CT 

scans from three sites, including 131 scans from the Liver Tumor Segmentation (LiTS)  

challenge (Site A, Europe) [12], 156 scans from Massachusetts General Hospital (MGH) (Site B, 

the US), and 405 scans from the Second Affiliated Hospital at Zhejiang University School of 

Medicine (SAHZU) (Site C, China). All scans at Site B and Site C were collected for liver tumor 

segmentation. The inclusion criteria were as follows: (1) at least one focal liver lesion diagnosed 

using CT; (2) confirmation of malignant tumors by corresponding pathologic reports; (3) 

diagnosis of benign lesions through pathological analyses or a combination of typical image 

performance and clinical data. As a result, fifteen scans (n=15) that did not contain any focal 

liver lesions were excluded (Figure 1a). The collected scans were acquired by using different 

imaging protocols at various CT scanners (GE, Siemens, and Philips), with a largely varying in-
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plane resolution from 0.52 mm to 1.0 mm and section thickness from 0.45 mm to 6.0 mm 

(Figure 1b). 

LiTS is a publicly available liver CT dataset, which was collected from seven hospitals and 

research institutions in Europe. As the institute information of each scan was removed, we 

treated LiTS as Site A with heterogeneous scans. LiTS only provides portal venous phase liver 

CT images, which were acquired with different CT scanners and acquisition protocols. The 

primary and secondary tumor types in LiTS are hepatocellular carcinoma (HCC) and metastases 

(ME). The segmentations provided by the LiTS were reviewed by a senior radiologist (with >10 

years’ experience of abdominal CT reading). In total, 734 tumors with an average size of 13.6 

cm3 were annotated, and 75% of these tumors smaller than 5 cm3.

Site B data were mainly HCC scans collected from September 2005 to August 2015 at MGH, 

acquired on two types of CT scanners (Siemens and GE). Three hepatic phases of CT images 

were collected: arterial, portal venous, and delayed phase. Tumors were contoured in portal 

venous phase with reference to arterial phase on an open software, 3D Quantitative Imaging 

(3DQI, V1.0) (https://3dqi.mgh.harvard.edu) by one junior radiologist (3 years’ experience) and 

confirmed by the senior radiologist. In total, 762 tumors with an average size of 61.4 cm3 were 

contoured. 

Site C data were hepatic CT scans collected from January 2016 to December 2018 at SAHZU, 

including three types of benign liver tumors (focal nodular hyperplasia (FNH), hemangioma 

(HEM), and cysts), and three types of malignant liver tumors (HCC, ME, and intrahepatic 

cholangiocarcinoma (ICC)). Pre-contrast, arterial, and portal venous phase images, acquired on 

three types of CT scanners (Siemens, GE and Philips), were collected. Tumors were contoured 

by one junior radiologist (5 years’ experience) using an open-source software (ITK-SNAP) [13] 

and confirmed by the senior radiologist. In total, 585 tumors with an average size of 38.2 cm3 

were contoured.

Figure 2 compares three examples of CT scan from each of the three sites and CT attenuation 

distributions (histograms) of tumors among the three sites. 
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2.2 Brain Tumor MRI Dataset

The FeTS 2021 dataset [11] is the first Fed-DL medical image dataset, which was collected from 

multiple sites with different clinical protocols, and contains 1251 total scans (with both images 

and segmentations). FeTS consists of a subset of glioblastoma (GBM) scans from the Brain 

Tumor Segmentation (BraTS) dataset [14] containing institutional information and an additional 

collection of GBM scans from other independent institutions. Each scan in FeTS includes 4 

sequences (pre- and post-contrast T1-weighted, T2-weighted, and T2-FLAIR). These scans have 

been preprocessed using the same steps, including co-registration, resampling (1 mm *1 mm * 1 

mm) and skull stripping. Tumors were contoured by one to four readers sharing the same 

contouring standard and were then confirmed by experienced neuroradiologists. For our study, 

we performed segmentation of GBM in post-contrast T1 images, which includes the non-

enhancing tumor (NET) and enhancing tumor (ET) regions. Because FeTS contains only GBM 

(grade 4 glioma), we additionally collected scans of three types of diffuse glioma (astrocytoma, 

glioblastoma, oligodendroglioma), which were histopathologically proven grade 2-4, from the 

newly published University of California, San Francisco (UCSF) preoperative diffuse glioma 

MRI dataset (UCSF-PDGM) [15] to study the impact of different types of glioma on Fed-DL 

performance. A total of 500 post-contrast T1-weighted MRI scans were added to our study.

2.3 Data Grouping 

We grouped both the FILTS and FeTS datasets respectively, according to site, tumor type, tumor 

size, dataset size, and tumor density (CT) / intensity (MRI) for evaluation of Fed-DL model 

performance on different types of data distribution. Tumor density refers to CT attenuation and 

tumor intensity is the normalized MRI signal intensity (Z-score) of tumors. 

Group 1: Different Sites

In FILTS, three subsets were treated as from three different sites. Portal venous phase CT scans 

were selected, as this was the only image type provided by Site A. In FeTS, we selected the three 

sites providing more than 40 scans (Site 1: 512 scans, Site 4: 47 scans, and Site 18: 382 scans). 

Sites with a small number of scans were not considered as they could introduce high bias.
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Group 2: Different Tumor Types

In FILTS, we grouped hepatic CT images at Site C according to six types of liver tumors: HEM, 

FNH, Cyst, HCC, ICC, and ME. Arterial phase CT scans were selected as certain liver tumor 

types, such as HCC and FNH, are better visualized in arterial phase than portal venous phase CT. 

In FeTS, the MRI scans added from UCSF-PDGM were grouped into three subsets based on the 

three types of diffuse gliomas. 

Group 3: Different Tumor Sizes

In FILTS, we grouped all scans into four subsets corresponding to tumor size thresholds of <15 

cm3, 15  50 cm3, 50  130 cm3, and >130 cm3. In FeTS, we grouped all scans from the 2 largest 

institutions into 6 subsets by using thresholds of <3 cm3, 3 – 10 cm3, and >10 cm3 for Site 1, and 

<2 cm3, 2  12 cm3, and >12 cm3 for Site 18, respectively. We chose different thresholds in order 

to keep the number of scans in each subset balanced.

Group 4: Different Dataset Sizes 

To assess the effect of imbalanced training datasets on Fed-DL model performance, we first 

randomly selected different subsets from each site in FILTS, provided that the total number of 

scans in the two testing subsets remained the same. Because Site A has the least number of scans 

(86) among the three sites, we randomly selected a similar number of scans (90) from both Site B 

and Site C. Then, we decreased the number of scans in Site A by 25% (65 scans) and 50% (43 

scans), and increased the same number of scans in Site B and Site C. Thus, the ratio of numbers 

of scans between two subsets decreased from approximately 1.0 (balanced) to 1/3 (imbalanced). 

For FeTS, the number of scans between Site 4 and Site 1 and Site 4 and Site 18 were highly 

imbalanced, with ratio of approximately 1/10. We evaluated the FeTS results in Group 1.

Group 5: Different Tumor Densities/Intensities 

We grouped the FeTS scans into four subsets (Q1-Q4) using thresholds of MRI signal intensity 

(SI) on both non-enhancing tumor (NET) and enhancing tumor (ET) regions, SI-Q1 (n=113|): 

NET < 25% and ET < 25%, SI-Q12 (n=406): NET < 50% and ET < 50%; SI-Q34 (n=387): NET 

 50% and ET  50%; SI-Q4 (n=116): NET  75% and ET  75%, respectively. For FILTS, 
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certain groups of tumors had large differences in tumor density, such as FNH (hyper) vs Cyst 

(hypo). We evaluated results for the FILTS dataset in Group 2.

2.4 Data Metrics 

Distance of Data Distribution

Data distribution specifies the data range and the relative frequency (probability of occurrence) 

of each data value. A histogram is the most commonly used statistical method to show data 

distribution. Four metrics were calculated to quantify distance in data distribution: Earth mover's 

distance (EMD) (or Wasserstein Distance) [16], Bhattacharyya distance (BD) [17], Chi-square 

distance (CSD) [18],  and Kolmogorov–Smirnov distance (KSD) [19]. 

Performance of Tumor Segmentation

The Dice coefficient is a most well-known metric to evaluate the performance of segmentation. 

We used the theta coefficient to assess performance between a federated model and a centralized 

model evaluated on the same dataset, defined as follows:

Theta = (Dice of federated model) / (Dice of centralized model).

In general, theta is less than 1.0. A theta value close to 1.0 means that the federated model 

achieves similar performance as that of a centralized model in tumor segmentation. Theta was 

reported as mean ± standard error, of which the standard error was estimated by method using 

bivariate first-order Taylor expansion (https://www.stat.cmu.edu/~hseltman/files/ratio.pdf).

We developed a federated implementation of nnU-Net [20] based on a server-client architecture 

and the Fed-Avg algorithm [21]. For a fair comparison between federated and centralized 

models, we first ran the nnU-Net planning and preprocessing task on all scans by configuration 

of a 3D U-Net segmentation pipeline, such as resampling, normalization, patch size, and data 

augmentation parameters. Then, training of either federated or centralized models employed the 

same pre-processed data and the same set of hyper-parameters. Federated models were trained on 

the scheme of one server and two clients, each client containing one sub-dataset. All federated 

and centralized models were trained on an NVIDIA Tesla P40 GPU cluster with 24 GB memory. 

Data in each group were randomly split into 80% for training and 20% for testing, and the results 

from the testing data were evaluated. 
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More technical details of the Fed-DL implementation were described in the Supplemental 

Materials.

2.5 Statistical Analysis

Paired t-test was performed to assess the difference in performance between a federated model 

and a centralized model on the same dataset. A p-value less than 0.05 rejects the null hypothesis 

that mean paired Dice difference between a federated model and a centralized model is zero and 

indicates statistically significant different performances between federated and centralized 

models. 

We also calculated the trendline and Person’s correlation coefficients to evaluate the association 

between theta coefficients and distance measures. The trendline is a linear function, y = kx + b, 

where the independent variable, x, is distance, dependent variable, y, is the theta value. The 

correlation coefficient is a measure of the goodness of fit of a linear relationship between theta 

and distance values. Statistical analyses were performed using MedCalc (version 19.5.6), and 

graphs were created using Microsoft Excel (version 2210).

2.6 Data Availability 

The data and the scripts used to perform study evaluations that support the findings will be made 

publicly available, without due reservation.  

3 Results

3.1 Fed-DL Performance on Grouped Data

Performance of Fed-DL models trained on data grouped by site, tumor type, tumor size, dataset 

size and tumor density/intensity are listed in Table 1-Table 4, respectively. 

Different Sites

We found no evidence of a difference between federated and centralized model performance on 

datasets grouped by site (p-values >0.05; Table 1). 
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Different Tumor Types

Table 2 shows theta values ranging from 0.877 to 0.982 in FILTS and 0.975 to 0.999 in FeTS. 

Figure 3a and 3b show two examples of distance in data distribution between HCC vs. HEM 

(small distance) and FNH vs. cyst (large distance). Figure 4 shows the distributions of CT 

attenuation among six types of liver tumors. Of 14 subsets in the FILTS dataset, 5 had 

significantly different performances (p-values <0.05) between federated and centralized models.

Different Tumor Sizes

Performance of Fed-DL models trained with different groups of tumor sizes are listed in Table 

3a (FILTS) and Table 3b (FeTS), respectively. Average theta values were high in both the 

FILTS (0.980±0.154) and FeTS (0.992±0.075) datasets. Figure 3c and 3d show two examples of 

distance in data distribution between Size 1 vs Size 2 (small tumors) and Size 3 vs Size 4 (large 

tumors). Although Dice values were higher for large tumors compared with small tumors, the 

theta values remained similar. 

Different Dataset Sizes

Table 4a shows performance values of Fed-DL models trained with different numbers of scans in 

FILTS. Lower ratios of numbers of scans (i.e. more imbalance) led to lower Dice values in both 

the federated and centralized models. However, average theta values remained similar: 

0.973±0.150 (ratio=1.0), 0.973±0.159 (ratio=0.6), and 0.975±0.128 (ratio=0.3). In the FeTS 

dataset (Table 1b), theta values remained high even when the ratio of numbers of scans was less 

than 0.3 (e.g., Site 4 : Site 1 = 47 : 512 = 0.092 and Site 4 : Site 18 = 47 : 382 = 0.123). 

Different Tumor Densities/Intensities 

Performance of federated models trained with different tumor intensities in the FeTS dataset 

significantly differed from centralized models (Table 4b). Figure 3e and 3f compare histograms 

of enhancing brain tumors between Site 1 vs. Site 4 (p=0.32) and SI-Q1 vs. SI-Q4 (p=0.003). For 

FILTS (Table 2a), tumors with different CT density typically had lower theta values, such as 

FNH (hyper) vs Cyst (hypo) and HCC (hyper) vs Cyst (hypo). 
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3.2 Correlation Analysis

The distances of data distributions were negatively correlated with theta, with correlation 

coefficients of -0.920, -0.893, -0.899 and -0.479 for EMD, BD, CSD, and KSD, respectively. 

The trendlines in Figure 5 show a negative slope between distance (EMD, BD, CSD, KSD) and 

theta, indicating lower federated model performance with greater distance between data 

distribution. The waterfall plots of EMD, BD, CSD, and KSD in Figure 6 show the effect of 

changes in distance of data distribution on performance of federated models compared with 

centralized models. 

There was a significant difference in performance between federated and centralized models for 

10 of the 62 total subsets (groups 1 to 5). Corresponding distances in data distribution also 

differed significantly between federated and centralized models, with values of 13.527±4.506 

(median=13.445) vs. 2.722±2.728 (median=1.691) (p<0.001) for EMD, 0.691±0.395 

(median=0.472) vs. 0.066±0.117 (median=0.025) (p=0.001) for BD, 0.618±0.211 

(median=0.531) vs. 0.095±0.137 (median=0.046) (p<0.001) for CSD, and 0.271±0.097 

(median=0.260) vs. 0.186±0.097 (median=0.170) (p=0.03) for KSD, respectively. 

4 Discussion

In this study, we investigated the correlation between various distance metrics that measure the 

difference in data distributions and Fed-DL performance in segmentation of liver tumors on CT 

and brain tumors on MRI. EMD had the strongest, negative correlation (r=-0.920) with federated 

model performance. We found that the between-site difference of tumor density (CT) / intensity 

(MRI) distributions influenced the Fed-DL performance, which was demonstrated by both liver 

tumors on CT and brain tumors on MRI. For liver tumors on CT, it was reflected by different 

tumor types which had different CT attenuations (density), whereas for brain tumors on MRI, it 

was reflected by tumor regions with different MRI signal intensity. In other words, the Fed-DL 

performance in tumor segmentation is affected by the difference of CT attenuation or MRI 

intensity of tumors at different sites. The magnitude of this difference could be measured by 

EMD, BD or CSD. Other factors including different tumor sizes or imbalanced dataset sizes did 

not significantly  impact overall data distribution and thus had little influence on 

federated model performance. 
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Our findings are consistent with those of Lee et al [9] and will have substantial impact on the 

development of Fed-DL using real-world non-IID data. We observed that a key underlying factor 

affecting the performance of federated models is the distance in data distributions. To achieve 

comparable performance with a centralized model, a federated model should be trained using 

datasets with small distances. Many approaches attempted to solve the issue of non-IID data in 

Fed-DL from the algorithmic perspective, such as episodic learning in continuous frequency 

space [22], local batch normalization [23], and cross-site modeling [24]. Motivated by our 

findings, we propose that data augmentation may be a more feasible and practical solution. For 

example, use of domain adaptation [25] among different clients to reduce data difference 

measured by EMD may improve Fed-DL performance, even with basic federated algorithms.   

The two most common Fed-DL workflows are server-client and peer-to-peer topology [26], and 

commonly used aggregation methods include Fed-Avg [21], Base + Personalization layer 

(FedPer) [27], and Federated Matched Averaging (FedMA) [28]. The server-client architecture 

with the Fed-Avg aggregation algorithm is the most common scheme of Fed-DL. We applied 

this federated scheme in our study to demonstrate the generalizability of our findings. 

There are only a few publicly available Fed-DL medical imaging datasets, including thorax 

disease classification on chest radiographs [29, 30], skin lesion image classification [31, 32], 

prostate MRI segmentation [33], and a retinal image database [34]. In particular, the 2021 RSNA 

Brain Tumor AI challenge based on FeTS (http://www.synapse.org/brats) has facilitated the first 

formal community benchmark explicitly for Fed-DL aggregation algorithms [11]. As FeTS 

contains only a single type of glioma, we added three types of glioma collected from the UCSF 

diffuse glioma MRI dataset (UCSF-PDGM) [15] to investigate the effect of tumor type on Fed-

DL performance. Since FeTS and UCSF-PDGM had different imaging protocols and standards, 

we did not mix UCSF-PDGM scans with FeTS scans in other data groups. 

Our study had several limitations. First, Site A used LiTS, which is a multi-site dataset, whereas 

datasets at Sites B and C were each acquired from a single site, respectively. Although scans 

from the same site were acquired by using similar imaging protocols on different CT scanners, 

they also varied in image resolution and image quality. Nevertheless, Site A data may have 

impacted study findings due to differences in imaging protocols at multiple sites. Second, tumor 

type was not reported for scans from Sites A and B. Since this was a retrospective study, tumor 



13

type data could not be obtained through tissue biopsy or postoperative pathologic examination. 

Third, we did not consider the potential effect of inter-reader variability, as segmentation was 

performed by different readers using different software at different institutions. This might 

contribute to performance degradation. However, such variability among sites may be 

unavoidable in real-world federated setting. 

In conclusion, differences in data distribution may affect Fed-DL model performance in medical 

image segmentation. Model performance was strongly negatively correlated with distance 

(EMD, BD, and CSD) in data distribution. Reducing data distance may provide a feasible 

solution to ensure development of a high-performing federated model trained on non-IID data. 



14

Acknowledgements 

LiTS data for liver tumor in CT were obtained from 

https://competitions.codalab.org/competitions/17094

FeTS data for brain tumor in MRI were obtained from http://www.synapse.org/brats. 

The study was partially supported by the Children’s Tumor Foundation.



15

References

[1] Minaee S, Boykov Y Y, Porikli F, et al. Image segmentation using deep learning: A survey. 
IEEE transactions on pattern analysis and machine intelligenc 2022, 44(7): 3523 - 3542.

[2] Kaissis G A, Makowski M R, Rückert D, et al. Secure, privacy-preserving and federated 
machine learning in medical imaging. Nature Machine Intelligence, 2020, 2(6): 305-311.

[3] Bonawitz K, Eichner H, Grieskamp W, et al. Towards federated learning at scale: System 
design. Proceedings of machine learning and systems, 2019, 1: 374-388.

[4] Yang Q, Liu Y, Chen T, et al. Federated machine learning: Concept and applications. ACM 
Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19.

[5] Sheller M J, Reina G A, Edwards B, et al. Multi-institutional deep learning modeling 
without sharing patient data: A feasibility study on brain tumor segmentation. Brainlesion: 
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International 
Workshop, 2019: 92-104.

[6] Li W, Milletarì F, Xu D, et al. Privacy-preserving federated brain tumour segmentation. 
Machine Learning in Medical Imaging: 10th International Workshop, 2019: 133-141.

[7] Roth H R, Chang K, Singh P, et al. Federated learning for breast density classification: A 
real-world implementation. Domain Adaptation and Representation Transfer, and 
Distributed and Collaborative Learning: Second MICCAI Workshop, 2020: 181-191.

[8] Sheller M J, Edwards B, Reina G A, et al. Federated learning in medicine: facilitating 
multi-institutional collaborations without sharing patient data. Scientific reports, 2020, 
10(1): 1-12.

[9] Lee G H, Shin S Y. Federated learning on clinical benchmark data: performance 
assessment. Journal of medical Internet research, 2020, 22(10): e20891.

[10] Zhao Y, Li M, Lai L, et al. Federated learning with non-iid data. arXiv preprint 
arXiv:1806.00582, 2018.

[11] Pati S, Baid U, Zenk M, et al. The federated tumor segmentation (fets) challenge. arXiv 
preprint arXiv:2105.05874, 2021.

[12] Bilic P, Christ P, Li H B, et al. The liver tumor segmentation benchmark (lits). Medical 
Image Analysis, 2023, 84: 102680.

[13] Yushkevich P A, Gao Y, Gerig G. ITK-SNAP: An interactive tool for semi-automatic 
segmentation of multi-modality biomedical images. 2016 38th annual international 
conference of the IEEE engineering in medicine and biology society (EMBC). 2016: 3342-
3345.

[14] Menze B H, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation 
benchmark (BRATS). IEEE transactions on medical imaging, 2014, 34(10): 1993-2024.

[15] Calabrese E, Villanueva-Meyer J E, Rudie J D, et al. The University of California San 
Francisco Preoperative Diffuse Glioma MRI Dataset. Radiology: Artificial Intelligence, 
2022, 4(6): e220058.



16

[16] Rubner Y, Tomasi C, Guibas L J. The earth mover's distance as a metric for image 
retrieval. International journal of computer vision, 2000, 40(2): 99-121.

[17] Bhattacharyya A. On a measure of divergence between two multinomial populations. 
 the indian journal of statistics, 1946, 7(4): 401-406.

[18] Pele O, Werman M. The quadratic-chi histogram distance family. 11th European 
Conference on Computer Vision. 2010: 749-762.

[19] Massey Jr F J. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American 
statistical Association, 1951, 46(253): 68-78.

[20] Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for deep 
learning-based biomedical image segmentation[J]. Nature methods, 2021, 18(2): 203-211.

[21] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep 
networks from decentralized data. Artificial intelligence and statistics. PMLR, 2017, 54: 
1273-1282.

[22] Liu Q, Chen C, Qin J, et al. FedDG: Federated domain generalization on medical image 
segmentation via episodic learning in continuous frequency space. Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1013-1023.

[23] Li X, Jiang M, Zhang X, et al. FedBN: Federated learning on non-iid features via local 
batch normalization. ICLR 2021.

[24] Guo P, Wang P, Zhou J, et al. Multi-institutional collaborations for improving deep 
learning-based magnetic resonance image reconstruction using federated learning. 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
2021: 2423-2432.

[25] Li X, Gu Y, Dvornek N, et al. Multi-site fMRI analysis using privacy-preserving federated 
learning and domain adaptation: ABIDE results. Medical Image Analysis, 2020, 65: 
101765.

[26] Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ 
digital medicine, 2020, 3(1): 119.

[27]  Arivazhagan M G, Aggarwal V, Singh A K, et al. Federated learning with personalization 
layers. arXiv preprint arXiv:1912.00818, 2019.

[28] Wang H, Yurochkin M, Sun Y, et al. Federated learning with matched averaging. arXiv 
preprint arXiv:2002.06440, 2020.

[29] Irvin J, Rajpurkar P, Ko M, et al. Chexpert: A large chest radiograph dataset with 
uncertainty labels and expert comparison. Proceedings of the AAAI conference on artificial 
intelligence. 2019, 33(01): 590-597.

[30] Wang X, Peng Y, Lu L, et al. ChestX-ray8: Hospital-scale chest x-ray database and 
benchmarks on weakly-supervised classification and localization of common thorax 
diseases. Proceedings of the IEEE conference on computer vision and pattern recognition. 
2017: 2097-2106.



17

[31] Kawahara J, Daneshvar S, Argenziano G, et al. Seven-point checklist and skin lesion 
classification using multitask multimodal neural nets. IEEE journal of biomedical and 
health informatics, 2018, 23(2): 538-546.

[32] Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-
source dermatoscopic images of common pigmented skin lesions. Scientific data, 2018, 
5(1): 1-9.

[33] Litjens G, Toth R, Van De Ven W, et al. Evaluation of prostate segmentation algorithms 
for MRI: the PROMISE12 challenge. Medical image analysis, 2014, 18(2): 359-373.

[34] Orlando J I, Fu H, Breda J B, et al. Refuge challenge: A unified framework for evaluating 
automated methods for glaucoma assessment from fundus photographs. Medical image 
analysis, 2020, 59: 101570.



18

T
a

b
le

s

T
ab

le
 1

. D
at

a 
D

is
tr

ib
ut

io
n 

an
d 

M
od

el
 P

er
fo

rm
an

ce
 M

et
ri

cs
 f

or
 D

if
fe

re
nt

 S
it

es

(a
) 

F
IL

T
S

 D
at

as
et

S
ub

se
t

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

S
ite

 A
, S

it
e 

B
4.

76
18

0.
07

68
0.

13
87

0.
28

00
0.

73
65

0.
75

33
0.

97
77

±0
.1

46
9

0.
35

S
ite

 A
, S

it
e 

C
2.

97
66

0.
03

56
0.

06
58

0.
29

00
0.

73
89

0.
74

95
0.

98
59

±0
.1

88
5

0.
37

S
ite

 B
, S

ite
 C

2.
02

55
0.

03
91

0.
07

22
0.

34
00

0.
79

86
0.

81
16

0.
98

39
±0

.1
46

7
0.

44

(b
) 

Fe
T

S 
D

at
as

et

S
ub

se
t

R
eg

io
n

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

N
E

T
1.

34
90

0.
02

43
0.

04
18

0.
13

00
0.

80
70

0.
80

84
0.

99
83

±0
.0

90
5

0.
80

S
ite

 1
, S

it
e 

4
E

T
0.

54
25

0.
00

22
0.

00
42

0.
14

00
0.

87
08

0.
88

12
0.

98
82

±0
.0

20
8

0.
32

N
E

0.
90

80
0.

00
74

0.
01

45
0.

11
00

0.
81

85
0.

82
20

0.
99

58
±0

.0
27

9
0.

53
S

ite
 1

, S
it

e 

18
E

T
2.

41
66

0.
01

27
0.

02
44

0.
16

99
0.

87
17

0.
88

67
0.

98
31

±0
.0

56
9

0.
27

N
E

T
1.

56
32

0.
03

36
0.

05
51

0.
07

00
0.

76
26

0.
76

56
0.

99
61

±0
.1

80
9

0.
52

S
ite

 4
, S

it
e 

18
E

T
1.

96
16

0.
00

93
0.

01
80

0.
15

00
0.

86
13

0.
87

00
0.

99
01

±0
.0

52
3

0.
14

N
ot

e.
—

 P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
. F

IL
T

S
: F

ed
er

at
ed

 I
m

ag
in

g 
of

 L
iv

er
 T

um
or

 S
eg

m
en

ta
tio

n,
 F

eT
S

: F
ed

er
at

ed
 T

um
or

 

S
eg

m
en

ta
ti

on
, E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: B
ha

tt
ac

ha
ry

ya
 d

is
ta

nc
e,

 C
S

D
: C

hi
-s

qu
ar

e 
di

st
an

ce
, K

S
D

: D
-s

ta
tis

ti
c 

of
 

K
ol

m
og

or
ov

–S
m

ir
no

v 
te

st
, F

ed
-D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

fe
de

ra
te

d 
de

ep
 le

ar
ni

ng
, C

en
t-

D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 
ce

nt
ra

liz
ed

 le
ar

ni
ng

, 

N
E

T
: n

on
-e

nh
an

ci
ng

 tu
m

or
 r

eg
io

n,
 E

T
: e

nh
an

ci
ng

 tu
m

or
 r

eg
io

n



19

T
ab

le
 2

. D
at

a 
D

is
tr

ib
ut

io
n 

an
d 

M
od

el
 P

er
fo

rm
an

ce
 M

et
ri

cs
 f

or
 D

if
fe

re
nt

 T
um

or
 T

yp
es

 

(a
) 

D
if

fe
re

nt
 tu

m
or

 ty
pe

s 
at

 S
it

e 
C

 o
f 

F
IL

T
S

 D
at

as
et

S
ub

se
t

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

H
E

M
, H

C
C

3.
34

43
0.

06
99

0.
12

78
0.

28
00

0.
80

16
0.

82
46

0.
97

22
±0

.1
65

5
0.

33

H
E

M
, F

N
H

 *
14

.0
65

9
0.

63
34

0.
66

98
0.

22
00

0.
75

15
0.

80
11

0.
93

81
±0

.1
75

5
0.

04

H
E

M
, C

ys
t

10
.0

00
6

0.
45

19
0.

53
53

0.
25

00
0.

81
16

0.
83

81
0.

96
83

±0
.1

69
4

0.
05

F
N

H
, C

ys
t *

23
.7

90
3

1.
45

61
0.

90
29

0.
48

00
0.

68
98

0.
78

71
0.

87
64

±0
.1

61
2

0.
01

H
E

M
, I

C
C

1.
65

21
0.

04
18

0.
07

33
0.

29
00

0.
77

91
0.

79
64

0.
97

82
±0

.1
49

0
0.

42

H
C

C
, I

C
C

3.
59

08
0.

08
18

0.
12

82
0.

39
99

0.
76

85
0.

78
29

0.
98

15
±0

.1
31

5
0.

47

F
N

H
, I

C
C

 *
14

.4
28

0
0.

98
20

0.
79

64
0.

26
99

0.
68

86
0.

78
56

0.
87

65
±0

.1
86

8
0.

01

H
E

M
, M

E
1.

82
66

0.
04

84
0.

08
35

0.
29

00
0.

79
69

0.
81

46
0.

97
83

±0
.1

53
9

0.
28

H
C

C
, M

E
4.

88
65

0.
13

63
0.

20
56

0.
18

00
0.

76
05

0.
78

91
0.

96
38

±0
.1

71
8

0.
11

IC
C

, M
E

1.
65

64
0.

01
77

0.
03

40
0.

13
00

0.
78

05
0.

79
91

0.
97

67
±0

.1
64

0
0.

37

H
C

C
, F

N
H

10
.9

59
7

0.
45

85
0.

54
13

0.
32

00
0.

78
98

0.
80

96
0.

97
55

±0
.1

38
9

0.
09

F
N

H
, M

E
 *

15
.8

08
2

1.
02

24
0.

82
56

0.
24

00
0.

72
81

0.
80

53
0.

90
41

±0
.2

13
3

0.
04

H
C

C
, C

ys
t *

12
.8

73
1

0.
62

64
0.

63
43

0.
38

00
0.

68
99

0.
75

37
0.

91
54

±0
.1

41
8

0.
01

M
E

, C
ys

t
8.

18
06

0.
37

32
0.

46
48

0.
44

00
0.

68
03

0.
72

95
0.

93
26

±0
.1

20
4

0.
05

N
ot

e.
—

 P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
; (

*)
 d

en
ot

es
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 p

er
fo

rm
an

ce
s 

(p
-v

al
ue

s 
<

0.
05

) 
be

tw
ee

n 
fe

de
ra

te
d 

an
d 

ce
nt

ra
li

ze
d 

m
od

el
s.

 F
IL

T
S

: F
ed

er
at

ed
 I

m
ag

in
g 

of
 L

iv
er

 T
um

or
 S

eg
m

en
ta

tio
n,

 H
C

C
: h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a,

 F
N

H
: f

oc
al

 n
od

ul
ar

 
hy

pe
rp

la
si

a,
 H

E
M

: h
em

an
gi

om
a,

 M
E

: m
et

as
ta

se
s,

 I
C

C
: i

nt
ra

he
pa

ti
c 

ch
ol

an
gi

oc
ar

ci
no

m
a,

 E
M

D
: E

ar
th

 m
ov

er
's

 d
is

ta
nc

e,
 B

D
: 

B
ha

tt
ac

ha
ry

ya
 d

is
ta

nc
e,

 C
SD

: C
hi

-s
qu

ar
e 

di
st

an
ce

, K
S

D
: D

-s
ta

ti
st

ic
 o

f 
K

ol
m

og
or

ov
–S

m
ir

no
v 

te
st

, F
ed

-D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 
fe

de
ra

te
d 

de
ep

 le
ar

ni
ng

, C
en

t-
D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

ce
nt

ra
liz

ed
 le

ar
ni

ng



20

(b
) 

Fe
T

S 
D

at
as

et

S
ub

se
t

R
eg

io
n

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

N
E

T
0.

52
06

0.
00

54
0.

01
07

0.
09

00
0.

78
75

0.
79

60
0.

98
93

±0
.1

83
4

0.
56

D
A

, G
B

M
E

T
3.

51
45

0.
03

09
0.

05
66

0.
20

00
0.

86
80

0.
87

46
0.

99
24

±0
.0

32
2

0.
29

D
A

, O
G

N
E

T
0.

65
96

0.
02

40
0.

04
06

0.
38

00
0.

67
48

0.
69

24
0.

97
46

±0
.2

27
3

0.
23

O
G

, G
B

M
N

E
T

0.
40

98
0.

01
22

0.
02

20
0.

36
00

0.
79

60
0.

79
69

0.
99

89
±0

.1
21

3
0.

93

N
ot

e.
—

 P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
. F

eT
S

: F
ed

er
at

ed
 T

um
or

 S
eg

m
en

ta
ti

on
, D

A
: D

if
fu

se
 A

st
ro

cy
to

m
a,

 G
B

M
: G

lio
bl

as
to

m
a,

 

O
G

: O
li

go
de

nd
ro

gl
io

m
a,

 N
E

T
: n

on
-e

nh
an

ci
ng

 tu
m

or
 r

eg
io

n,
 E

T
: e

nh
an

ci
ng

 tu
m

or
 r

eg
io

n,
 E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: 

B
ha

tt
ac

ha
ry

ya
 d

is
ta

nc
e,

 C
SD

: C
hi

-s
qu

ar
e 

di
st

an
ce

, K
S

D
: D

-s
ta

ti
st

ic
 o

f 
K

ol
m

og
or

ov
–S

m
ir

no
v 

te
st

, F
ed

-D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 

fe
de

ra
te

d 
de

ep
 le

ar
ni

ng
, C

en
t-

D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 
ce

nt
ra

liz
ed

 le
ar

ni
ng



21

T
ab

le
 3

. D
at

a 
D

is
tr

ib
ut

io
n 

an
d 

M
od

el
 P

er
fo

rm
an

ce
 M

et
ri

cs
 f

or
 D

if
fe

re
nt

 T
um

or
 S

iz
es

 

(a
) 

F
IL

T
S

 D
at

as
et

 

S
ub

se
t

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

S
iz

e 
1,

 S
iz

e 
2

0.
92

38
0.

00
71

0.
01

39
0.

11
00

0.
73

57
0.

74
81

0.
98

35
±0

.1
58

1
0.

33

S
iz

e 
1,

 S
iz

e 
3

2.
33

66
0.

02
44

0.
04

59
0.

10
99

0.
72

70
0.

74
72

0.
97

30
±0

.1
63

5
0.

39

S
iz

e 
1,

 S
iz

e 
4

1.
84

15
0.

01
58

0.
02

98
0.

17
00

0.
72

89
0.

74
61

0.
97

69
±0

.1
93

2
0.

51

S
iz

e 
2,

 S
iz

e 
3

1.
72

54
0.

01
34

0.
02

50
0.

08
00

0.
79

06
0.

80
65

0.
98

03
±0

.1
44

3
0.

52

S
iz

e 
2,

 S
iz

e 
4

1.
21

16
0.

01
26

0.
02

33
0.

13
00

0.
80

16
0.

81
45

0.
98

42
±0

.1
61

0
0.

45

S
iz

e 
3,

 S
iz

e 
4

0.
78

24
0.

01
14

0.
02

17
0.

09
00

0.
82

93
0.

84
31

0.
98

36
±0

.1
03

7
0.

39

N
ot

e.
—

S
iz

e 
1:

 tu
m

or
s 

 1
5 

cm
3;

 S
iz

e 
2:

 1
5 

cm
3 

<
 tu

m
or

s 
 5

0 
cm

3;
 S

iz
e 

3:
 5

0 
cm

3 
<

 tu
m

or
s 

 1
30

 c
m

3;
 S

iz
e 

4:
 tu

m
or

s 
>

 1
30

 c
m

3.
 

P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
. F

IL
T

S
: F

ed
er

at
ed

 I
m

ag
in

g 
of

 L
iv

er
 T

um
or

 S
eg

m
en

ta
ti

on
, E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: 

B
ha

tt
ac

ha
ry

ya
 d

is
ta

nc
e,

 C
SD

: C
hi

-s
qu

ar
e 

di
st

an
ce

, K
S

D
: D

-s
ta

ti
st

ic
 o

f 
K

ol
m

og
or

ov
–S

m
ir

no
v 

te
st

, F
ed

-D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 

fe
de

ra
te

d 
de

ep
 le

ar
ni

ng
, C

en
t-

D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 
ce

nt
ra

liz
ed

 le
ar

ni
ng



22

(b
) 

Fe
T

S 
D

at
as

et

S
ub

se
t

R
eg

io
n

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

N
E

T
2.

10
26

0.
02

03
0.

03
88

0.
04

00
0.

75
53

0.
77

49
0.

97
47

±0
.1

10
8

0.
15

S
iz

e 
1,

 

S
iz

e 
2

E
T

0.
25

56
0.

00
07

0.
00

14
0.

16
00

0.
85

74
0.

86
17

0.
99

50
±0

.0
34

7
0.

21

N
E

T
2.

25
00

0.
02

46
0.

04
53

0.
04

90
0.

75
24

0.
76

18
0.

98
76

±0
.0

80
2

0.
65

S
iz

e 
1,

 

S
iz

e 
3

E
T

0.
64

71
0.

00
24

0.
00

47
0.

24
00

0.
87

21
0.

87
44

0.
99

73
±0

.0
29

3
0.

43

N
E

T
0.

15
47

0.
00

17
0.

00
34

0.
04

99
0.

86
60

0.
86

66
0.

99
93

±0
.0

60
5

0.
79

S
iz

e 
2,

 

S
iz

e 
3

E
T

0.
43

90
0.

00
11

0.
00

22
0.

08
99

0.
90

48
0.

90
82

0.
99

63
±0

.0
52

7
0.

59

N
E

T
0.

56
29

0.
00

74
0.

01
44

0.
16

00
0.

72
63

0.
73

69
0.

98
55

±0
.1

71
5

0.
25

S
iz

e 
4,

 

S
iz

e 
5

E
T

0.
77

04
0.

00
42

0.
00

70
0.

11
00

0.
82

76
0.

83
43

0.
99

20
±0

.0
68

8
0.

39

N
E

T
0.

65
32

0.
01

13
0.

02
04

0.
10

00
0.

79
87

0.
80

74
0.

98
92

±0
.0

37
2

0.
33

S
iz

e 
4,

 

S
iz

e 
6

E
T

0.
72

67
0.

00
46

0.
00

87
0.

17
00

0.
84

72
0.

84
97

0.
99

70
±0

.0
56

1
0.

34

N
E

T
0.

19
13

0.
00

35
0.

00
50

0.
06

00
0.

85
54

0.
85

58
0.

99
95

±0
.0

96
2

0.
84

S
iz

e 
5,

 

S
iz

e 
6

E
T

0.
73

50
0.

00
24

0.
00

46
0.

13
00

0.
86

55
0.

86
88

0.
99

62
±0

.1
00

9
0.

37

N
ot

e.
—

 S
it

e 
1 

w
as

 g
ro

up
ed

 in
to

 th
re

e 
su

bs
et

s 
us

in
g 

tu
m

or
 c

or
e 

vo
lu

m
e 

as
 f

ol
lo

w
s:

 S
iz

e 
1 

 
 3

 c
m

3 ;
 S

iz
e 

2:
 3

 c
m

3  
<

 tu
m

or
s 

 1
0 

cm
3 ;

 

S
iz

e 
3:

 >
10

 c
m

3 .
 S

ite
 1

8 
w

as
 g

ro
up

ed
 in

to
 th

re
e 

su
bs

et
s 

as
 f

el
lo

w
s:

 S
iz

e 
4 

 2
 c

m
3 ;

 S
iz

e 
5:

 2
 c

m
3  

<
 tu

m
or

s 
 1

2 
cm

3 ;
 S

iz
e 

6:
 >

12
 c

m
3 .

 

P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
. F

eT
S

: F
ed

er
at

ed
 T

um
or

 S
eg

m
en

ta
ti

on
, E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: B
ha

tt
ac

ha
ry

ya
 

di
st

an
ce

, C
S

D
: C

hi
-s

qu
ar

e 
di

st
an

ce
, K

SD
: D

-s
ta

tis
ti

c 
of

 K
ol

m
og

or
ov

–S
m

ir
no

v 
te

st
, F

ed
-D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

fe
de

ra
te

d 
de

ep
 

le
ar

ni
ng

, C
en

t-
D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

ce
nt

ra
li

ze
d 

le
ar

ni
ng



23

T
ab

le
 4

. D
at

a 
D

is
tr

ib
ut

io
n 

an
d 

M
od

el
 P

er
fo

rm
an

ce
 M

et
ri

cs
 f

or
 I

m
ba

la
nc

ed
 D

at
as

et
 S

iz
es

 in
 F

IL
T

S
 a

nd
 D

if
fe

re
nt

 T
um

or
 I

nt
en

si
ti

es
 in

 

F
eT

S

(a
) 

Im
ba

la
nc

ed
 n

um
be

rs
 o

f 
sc

an
s 

in
 F

IL
T

S
 

S
ub

se
t 

(R
at

io
)

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

S
ite

 A
1 

: S
it

e 
B

2 
(0

.9
6)

4.
59

40
0.

07
36

0.
13

35
0.

28
00

0.
73

27
0.

75
07

0.
97

60
±0

.1
75

8
0.

32

S
ite

 A
2 

: S
it

e 
B

3 
(0

.5
9)

5.
11

50
0.

08
28

0.
14

85
0.

23
00

0.
70

53
0.

73
57

0.
95

87
±0

.1
84

4
0.

12

S
ite

 A
1 

: S
it

e 
C

2 
(0

.9
6)

5.
04

05
0.

07
99

0.
13

74
0.

16
90

0.
71

98
0.

75
35

0.
95

53
±0

.1
66

7
0.

26

S
ite

 A
2 

: S
it

e 
C

3 
(0

.5
9)

4.
43

45
0.

06
12

0.
10

86
0.

10
00

0.
68

54
0.

70
73

0.
96

90
±0

.1
61

9
0.

40

S
ite

 A
3 

: S
it

e 
C

5 
(0

.3
2)

3.
77

34
0.

04
53

0.
08

26
0.

11
00

0.
69

18
0.

71
28

0.
97

05
±0

.1
45

6
0.

29

S
ite

 B
2 

: S
ite

 C
2 

(1
.0

0)
1.

24
02

0.
03

77
0.

06
83

0.
20

00
0.

77
16

0.
78

23
0.

98
63

±0
.1

07
2

0.
18

S
ite

 C
4 

: S
ite

 B
3 

(0
.5

9)
1.

58
85

0.
03

61
0.

06
58

0.
23

00
0.

76
08

0.
77

45
0.

98
23

±0
.1

28
8

0.
50

S
ite

 B
4 

: S
ite

 C
3 

(0
.5

9)
1.

32
35

0.
04

21
0.

07
51

0.
23

00
0.

75
92

0.
77

38
0.

98
11

±0
.1

62
8

0.
34

S
ite

 B
5 

: S
ite

 C
5 

(0
.3

2)
1.

18
44

0.
04

24
0.

07
55

0.
19

00
0.

75
36

0.
76

89
0.

98
01

±0
.1

10
0

0.
42

N
ot

e.
—

 N
um

be
r 

of
 s

ca
ns

: S
it

e 
A

1 
(8

6)
, S

ite
 B

2 
(9

0)
, S

ite
 C

2 
(9

0)
; S

it
e 

A
2 

(6
5)

, S
ite

 B
3 

(1
11

),
 S

it
e 

C
3 

(1
11

);
 S

it
e 

A
3 

(4
3)

, S
it

e 
B

4 

(6
5)

, S
it

e 
C

4 
(6

5)
; S

ite
 B

5 
(4

3)
, S

ite
 C

5 
(1

33
).

 P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
. F

IL
T

S
: F

ed
er

at
ed

 I
m

ag
in

g 
in

 L
iv

er
 T

um
or

 

S
eg

m
en

ta
ti

on
, E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: B
ha

tt
ac

ha
ry

ya
 d

is
ta

nc
e,

 C
S

D
: C

hi
-s

qu
ar

e 
di

st
an

ce
, K

S
D

: D
-s

ta
tis

ti
c 

of
 

K
ol

m
og

or
ov

–S
m

ir
no

v 
te

st
, F

ed
-D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

fe
de

ra
te

d 
de

ep
 le

ar
ni

ng
, C

en
t-

D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 
ce

nt
ra

liz
ed

 le
ar

ni
ng



24

(b
) 

D
if

fe
re

nt
 tu

m
or

 in
te

ns
iti

es
 in

 F
eT

S

S
ub

se
t

R
eg

io
n

E
M

D
B

D
C

S
D

K
SD

F
ed

-D
ic

e
C

en
t-

D
ic

e
th
et
a

p-
va

lu
e

N
E

T
 *

6.
20

58
0.

24
52

0.
34

37
0.

17
00

0.
72

72
0.

76
26

0.
95

36
±0

.1
36

5
0.

04
S

I-
Q

12
, 

S
I-

Q
34

E
T

6.
89

82
0.

09
65

0.
16

05
0.

21
00

0.
80

31
0.

84
32

0.
95

25
±0

.0
66

2
0.

06

N
E

T
8.

73
06

0.
49

61
0.

55
63

0.
19

00
0.

65
54

0.
69

31
0.

94
56

±0
.1

92
7

0.
06

S
I-

Q
1,

 

S
I-

Q
34

E
T

 *
10

.1
32

5
0.

21
37

0.
29

74
0.

28
00

0.
75

99
0.

81
17

0.
93

62
±0

.0
35

1
0.

01

N
E

T
 *

11
.3

05
0

0.
55

75
0.

58
57

0.
19

00
0.

74
26

0.
78

38
0.

94
75

±0
.2

00
4

0.
04

S
I-

Q
12

, 

S
I-

Q
4

E
T

9.
59

00
0.

16
87

0.
25

62
0.

20
00

0.
76

86
0.

80
59

0.
95

37
±0

.0
49

8
0.

09

N
E

T
 *

13
.8

35
0

0.
86

64
0.

73
06

0.
18

00
0.

54
11

0.
59

47
0.

90
98

±0
.2

27
9

0.
02

S
I-

Q
1,

 

S
I-

Q
4

E
T

 *
12

.8
24

3
0.

31
04

0.
39

29
0.

30
00

0.
69

65
0.

75
51

0.
92

24
±0

.1
66

2
0.

00
3

N
ot

e.
—

 S
I-

Q
(s

ig
na

l i
nt

en
si

ty
 q

ua
rt

er
)1

: n
on

-e
nh

an
ci

ng
 <

 2
5%

 a
nd

 e
nh

an
ci

ng
 <

 2
5%

; S
I-

Q
12

: n
on

-e
nh

an
ci

ng
 <

 5
0%

 a
nd

 e
nh

an
ci

ng
 <

 

50
%

; S
I-

Q
34

: n
on

-e
nh

an
ci

ng
 

 5
0%

 a
nd

 e
nh

an
ci

ng
 

 5
0%

; S
I-

Q
4:

 n
on

-e
nh

an
ci

ng
 

 7
5%

 a
nd

 e
nh

an
ci

ng
 

 7
5%

. P
-v

al
ue

 c
al

cu
la

te
d 

us
in

g 
pa

ir
ed

 t 
te

st
; (

*)
 d

en
ot

es
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 p

er
fo

rm
an

ce
s 

(p
-v

al
ue

s 
<

0.
05

) 
be

tw
ee

n 
fe

de
ra

te
d 

an
d 

ce
nt

ra
liz

ed
 m

od
el

s.
 F

eT
S

: 

F
ed

er
at

ed
 T

um
or

 S
eg

m
en

ta
tio

n,
 E

M
D

: E
ar

th
 m

ov
er

's
 d

is
ta

nc
e,

 B
D

: B
ha

tta
ch

ar
yy

a 
di

st
an

ce
, C

S
D

: C
hi

-s
qu

ar
e 

di
st

an
ce

, K
SD

: D
-

st
at

is
tic

 o
f 

K
ol

m
og

or
ov

–S
m

ir
no

v 
te

st
, F

ed
-D

ic
e:

 D
ic

e 
co

ef
fi

ci
en

t o
f 

fe
de

ra
te

d 
de

ep
 le

ar
ni

ng
, C

en
t-

D
ic

e:
 D

ic
e 

co
ef

fi
ci

en
t o

f 

ce
nt

ra
li

ze
d 

le
ar

ni
ng



25

Figure Legends

Figure 1. (A) Selection criteria and (B) characteristics for the Federated Imaging in Liver Tumor 

Segmentation (FILTS) dataset. FNH = focal nodular hyperplasia, HCC = hepatocellular 

carcinoma, HEM = hemangioma, ICC = intrahepatic cholangiocarcinoma, LiTS = Liver Tumor 

Segmentation, ME = metastases.

Figure 2. (A-C) Example CT axial images of liver tumors at different sites and (D-F) histograms 

showing differences in CT attenuation distribution across the three sites.   

Figure 3. (A-F) Examples of histogram between two different subsets of tumor in CT Liver 

Tumor Segmentation (FILTS) and MRI brain tumor segmentation (FeTS) datasets. HCC = 

hepatocellular carcinoma, HEM = hemangioma, FNH = focal nodular hyperplasia, EMD: Earth 

mover's distance, BD: Bhattacharyya distance, CSD: Chi-square distance, KSD: D-statistic of 

Kolmogorov–Smirnov test.

Figure 4. CT attenuation distributions of different types of tumors at Site C in CT Liver Tumor 

Segmentation (FILTS) dataset. HCC = hepatocellular carcinoma, HEM = hemangioma, ME = 

metastases, FNH = focal nodular hyperplasia, ICC = intrahepatic cholangiocarcinoma.

Figure 5.  Correlation coefficients and trendlines between distance metrics (A) EMD, (B) BD, 

(C) CSD, and (D) KSD and theta value. EMD: Earth mover's distance, BD: Bhattacharyya 

distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov–Smirnov test. 

Figure 6. Waterfall plots of (A) EMD, (B) BD, (C) CSD, and (D) KSD related to the 

performances of the federated models in 62 grouped subsets evaluations. EMD: Earth mover's 

distance, BD: Bhattacharyya distance, CSD: Chi-square distance, KSD: D-statistic of 

Kolmogorov–Smirnov test. Bar color indicates the p-values calculated using paired t test: Red: 

<0.05; Yellow: 0.05  p-value < 0.10; Blue:  
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Supplemental Material

4.1 Metrics of Data Distribution

Earth mover's distance (EMD) (or Wasserstein Distance) evaluates the dissimilarity between two 

data distributions that are represented by histograms [1]. Suppose  and 1{( , )}m
i i iP p u

 are two histograms with sizes m and n, respectively, in which ( ) is the ith 1{( , )}n
j j jQ q v iu jv

(jth) bin and ( ) is its weight. EMD is defined as the minimum work required to resolve the ip jq

supply-demand transports:

,

{ }
,

EMD , min
ij

ij iji j

F f
iji j

f d
P Q

f

subject to the following constraints:

,

, , min , , 0ij i ij j ij i j ij
j i i j i j

f p f q f p q f

where  denotes a set of flows, and each flow  represents the amount transported from { }ijF f ijf

the ith bin to the jth bin.  is the ground distance between the positions  and .ijd iu jv

For two data distributions P and Q over the same domain X, the Bhattacharyya distance (BD) [2] 

is defined as

BD , ln BC( , )P Q P Q

where  is the Bhattacharyya coefficient for discrete probability BC( , ) ( ) ( )
x X

P Q p x q x

distributions.

The chi-square distance (CSD) between two distributions P and Q is defined by [3]

21 [ ( ) ( )]
CSD ,

2 ( ) ( )x X

p x q x
P Q

p x q x

The two-sample Kolmogorov-Smirnov distance (KSD) is defined as the maximum absolute 

distance between their cumulative distribution functions (CDFs), which is obtained as [4]
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KSD , max ( ) ( )P Q
x

P Q F x F x

where  and  are the CDFs of the distributions P and Q, respectively.( )PF x ( )QF x

4.2 Federated Deep Learning (Fed-DL) Models of Tumor 

Segmentation

We employed nnU-Net [5] for segmentation of liver tumors on CT and brain tumors on MRI in 

the study. Both federated and centralized models applied the same hyper parameters, and the 

same data augmentation techniques including rotation, scaling, Gaussian noise, Gaussian blur, 

brightness, contrast, simulation of low resolution, gamma correction and mirroring. Instead of 

using the original gradients averaging and updating during each mini-batch training, we adopted 

the Fed-Avg algorithm [6], a more efficient and common Fed-DL training strategy, in which 

weight averaging was performed during each epoch. 

In the training stage, we applied mini-batch optimizer to train the model, and the network was 

trained for 300 epochs, with one epoch being defined by an iteration over 200 mini-batches. 

Samples in the mini-batches were chosen randomly from the training scans. Stochastic gradient 

descent with Nesterov momentum  = 0.99) and an initial learning rate of 0.01 were used for 

learning network weights. The learning rate was decayed throughout the training by following 

the ‘poly’ learning rate policy of (1  epoch/epochmax)0.9. We used the loss function that 

combines Dice loss with the standard binary cross-entropy (BCE) loss, which is generally the 

default for segmentation models. Also, the instance normalization was applied for each layer of 

the model. 

In the inference stage, only testing data were used for inference. Segmentations were predicted 

with a sliding window approach, in which the window size equals the patch size used during 

training. Adjacent predictions overlap by half of the size of a patch. A Gaussian importance 

weighting was applied to reduce stitching artifacts and the influence of positions close to 

borders.

There are several open-source Fed-DL frameworks, such as TensorFlow Federated [7], PySyft 

[8], and Federated AI Technology Enabler [9]. These frameworks provided some general 

prototypes of server-client topology and communication mechanism. But they did not provide 
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some specific networks or optimization strategies that were required in medical image 

segmentation. Therefore, most of Fed-DL research was built on specific networks or learning 

strategies on their own. As the nnU-Net framework was too complicated to directly plunge into 

the existing federated framework, we implemented the federated averaging on the nnU-Net 

framework. The implemented server-client communication exactly followed the process 

described in [6]. 

The scripts of training commands of Fed-DL and centralized learning based on nnU-Net were 

like: 

python FL_training.py 3d_fullres nnUNetTrainerV2 Task002_BrainTumor 1 site1 site2  --npz --

use_compressed_data

python CL_training.py 3d_fullres nnUNetTrainerV2 Task002_BrainTumor 1 site1 site2  --npz --

use_compressed_data
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Figure 1. (a) Selection criteria. 



 

Figure 1.(b) characteristics for the Federated Imaging in Liver Tumor Segmentation (FILTS) dataset. FNH = 
focal nodular hyperplasia, HCC = hepatocellular carcinoma, HEM = hemangioma, ICC = intrahepatic 

cholangiocarcinoma, LiTS = Liver Tumor Segmentation, ME = metastases 



 

Figure 2. (A-C) Example CT axial images of liver tumors at different sites and (D-F) histograms showing 
differences in CT attenuation distribution across the three sites. 
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Figure 3. (A-F) Examples of histogram between two different subsets of tumor in CT Liver Tumor 
Segmentation (FILTS) and MRI brain tumor segmentation (FeTS) datasets. HCC = hepatocellular carcinoma, 

HEM = hemangioma, FNH = focal nodular hyperplasia, EMD: Earth mover's distance, BD: Bhattacharyya 
distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov–Smirnov test. 
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Figure 4. CT attenuation distributions of different types of tumors at Site C in CT Liver Tumor Segmentation 
(FILTS) dataset. HCC = hepatocellular carcinoma, HEM = hemangioma, ME = metastases, FNH = focal 

nodular hyperplasia, ICC = intrahepatic cholangiocarcinoma. 
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Figure 5.  Correlation coefficients and trendlines between distance metrics (A) EMD, (B) BD, (C) CSD, and 
(D) KSD and theta value. EMD: Earth mover's distance, BD: Bhattacharyya distance, CSD: Chi-square 

distance, KSD: D-statistic of Kolmogorov–Smirnov test. 
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Figure 6. Waterfall plots of (A) EMD, (B) BD, (C) CSD, and (D) KSD related to the performances of the 
federated models in 62 grouped subsets evaluations. EMD: Earth mover's distance, BD: Bhattacharyya 

distance, CSD: Chi-square distance, KSD: D-statistic of Kolmogorov–Smirnov test. Color indicates the p-
values calculated using paired t test: Red: <0.05; Yellow: 0.05  p-value < 0.10; Blue:  
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